156590
Książka
W koszyku
Znaczenie danych Czym jest analiza danych? Hipotetyczna motywacja Określanie najważniejszych węzłów Analitycy, których możesz znać Wynagrodzenie i doświadczenie Płatne konta Tematy interesujące użytkowników Błyskawiczny kurs Pythona Zasady tworzenia kodu Pythona Skąd wziąć interpreter Pythona? Środowiska wirtualne Formatowanie za pomocą białych znaków Moduły Polskie znaki diakrytyczne Funkcje Łańcuchy Wyjątki Listy Krotki Słowniki defaultdict Counter Zbiory Przepływ sterowania Wartości logiczne Sortowanie Składanie list Testy automatyczne i instrukcja assert Programowanie obiektowe Obiekty iterowalne i generatory Losowość Wyrażenia regularne Narzędzia funkcyjne Funkcja zip i rozpakowywanie argumentów Argumenty nazwane i nienazwane Adnotacje typów Jak pisać adnotacje typów Witaj w firmie DataSciencester! 3. Wizualizacja danych Pakiet matplotlib Wykres słupkowy Wykresy liniowe Wykresy punktowe 4. Algebra liniowa Wektory Macierze 5. Statystyka Opis pojedynczego zbioru danych Tendencje centralne Dyspersja Korelacja Paradoks Simpsona Korelacja i przyczynowość 6. Prawdopodobieństwo Zależność i niezależność Prawdopodobieństwo warunkowe Twierdzenie Bayesa Zmienne losowe Ciągły rozkład prawdopodobieństwa Rozkład normalny Centralne twierdzenie graniczne Przykład: rzut monetą Wartości p Przedziały ufności Hakowanie wartości p Przykład: przeprowadzanie testu A-B Wnioskowanie bayesowskie Dalsza eksploracja 8. Metoda gradientu prostego Podstawy metody gradientu prostego Szacowanie gradientu Korzystanie z gradientu Dobór właściwego rozmiaru kroku Używanie metody gradientu do dopasowywania modeli Metody gradientu prostego: stochastyczna i minibatch 9. Uzyskiwanie danych Strumienie stdin i stdout Wczytywanie plików Podstawowe zagadnienia dotyczące plików tekstowych Pliki zawierające dane rozdzielone separatorem Pobieranie danych ze stron internetowych HTML i parsowanie Przykład: wypowiedzi kongresmenów Korzystanie z interfejsów programistycznych Format JSON (i XML) Korzystanie z interfejsu programistycznego bez uwierzytelniania Poszukiwanie interfejsów programistycznych Przykład: korzystanie z interfejsów programistycznych serwisu Twitter Uzyskiwanie danych uwierzytelniających Eksploracja danych jednowymiarowych Dwa wymiary 1 Wiele wymiarów Wykorzystanie klasy NamedTuple Dekorator dataclass Oczyszczanie i wstępne przetwarzanie danych Przetwarzanie danych Przeskalowanie Dygresja: tqdm Redukcja liczby wymiarów 11. Uczenie maszynowe Modelowanie Czym jest uczenie maszynowe? Nadmierne i zbyt małe dopasowanie Poprawność Kompromis pomiędzy wartością progową a wariancją Ekstrakcja i selekcja cech 12. Algorytm k najbliższych sąsiadów Model Przykład: dane dotyczące irysów Przekleństwo wymiarowości 13. Naiwny klasyfikator bayesowski Bardzo prosty filtr antyspamowy Bardziej zaawansowany filtr antyspamowy Implementacja Testowanie modelu Używanie modelu 14. Prosta regresja liniowa Model Korzystanie z algorytmu spadku gradientowego Szacowanie maksymalnego prawdopodobieństwa 15. Regresja wieloraka Model Dalsze założenia dotyczące modelu najmniejszych kwadratów Dopasowywanie modelu Interpretacja modelu Poprawność dopasowania Dygresja: ładowanie wstępne Błędy standardowe współczynników regresji Regularyzacja 16. Regresja logistyczna Funkcja logistyczna Stosowanie modelu Poprawność dopasowania Maszyny wektorów nośnych Dalsza eksploracja 17. Drzewa decyzyjne Czym jest drzewo decyzyjne? Entropia Entropia podziału Tworzenie drzewa decyzyjnego Łączenie wszystkiego w całość Lasy losowe 18. Sztuczne sieci neuronowe Perceptrony Jednokierunkowe sieci neuronowe Propagacja wsteczna Przykład: Fizz Buzz Dalsza eksploracja 19. Uczenie głębokie Tensor Abstrakcja Layer Warstwa Linear Sieci neuronowe jako sekwencje warstw Abstrakcja Loss i optymalizacja Przykład: kolejne podejście do bramki XOR Inne funkcje aktywacji Przykład: kolejne podejście do gry Fizz Buzz Funkcja softmax i entropia krzyżowa Dropout Przykład: MNIST Zapisywanie i wczytywanie modeli 20. Grupowanie Idea Model Przykład: spotkania Wybór wartości parametru k Przykład: grupowanie kolorów Grupowanie hierarchiczne z podejściem aglomeracyjnym 21. Przetwarzanie języka naturalnego Chmury wyrazowe Modele n-gram Gramatyka Na marginesie: próbkowanie Gibbsa Modelowanie tematu Wektory słów Rekurencyjne sieci neuronowe Przykład: używanie rekurencyjnej sieci neuronowej na poziomie pojedynczych znaków Dalsza eksploracja 22. Analiza sieci społecznościowych Pośrednictwo Centralność wektorów własnych Mnożenie macierzy Centralność Grafy skierowane i metoda PageRank 23. Systemy rekomendujące Ręczne rozwiązywanie problemu Rekomendowanie tego, co jest popularne Filtrowanie kolaboratywne oparte na użytkownikach Filtrowanie kolaboratywne oparte na zainteresowaniach Faktoryzacja macierzy 24. Bazy danych i SQL Polecenia CREATE TABLE i INSERT Polecenie UPDATE Polecenie DELETE Polecenie SELECT Polecenie GROUP BY Polecenie ORDER BY Polecenie JOIN Zapytania składowe Optymalizacja zapytań Bazy danych NoSQL Dalsza eksploracja 25. Algorytm MapReduce Przykład: liczenie słów Dlaczego warto korzystać z algorytmu MapReduce? Algorytm MapReduce w ujęciu bardziej ogólnym Przykład: analiza treści statusów Przykład: mnożenie macierzy Dodatkowe informacje: zespalanie 26. Etyka przetwarzania danych Czym jest etyka danych? Ale tak naprawdę to czym jest etyka danych? Czy powinienem przejmować się etyką danych? Tworzenie złych produktów wykorzystujących dane Kompromis między dokładnością a uczciwością Współpraca Interpretowalność Rekomendacje Tendencyjne dane Ochrona danych IPython Matematyka Korzystanie z gotowych rozwiązań NumPy pandas scikit-learn Wizualizacja R Uczenie głębokie Szukanie danych Zabierz się za analizę Hacker News Wozy straży pożarnej Koszulki Tweety na kuli ziemskiej
Sygnatura czytelni BWEAiI: XII Ł 217
Pliki multimedialne:
Status dostępności:
Biblioteka WEAiI
Wszystkie egzemplarze są obecnie wypożyczone: sygn. 153003 (1 egz.)
Strefa uwag:
Tytuł oryginału: Data science from scratch : first principles with Python, 2019
Uwaga ogólna
Wydanie 2. odnosi się do oryginału.
Na stronie tytułowej i okładce także nazwa wydawcy oryginału: O'Reilly.
Pozycja została dodana do koszyka. Jeśli nie wiesz, do czego służy koszyk, kliknij tutaj, aby poznać szczegóły.
Nie pokazuj tego więcej

Deklaracja dostępności